The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression.
نویسندگان
چکیده
MicroRNAs (miRNAs) have emerged as key regulators of gene expression at the post-transcriptional level in both plants and animals. However, the specific functions of MIRNAs (MIRs) and the mechanisms regulating their expression are not fully understood. Previous studies showed that miR160 negatively regulates three genes that encode AUXIN RESPONSE FACTORs (ARF10, -16, and -17). Here, we characterized floral organs in carpels (foc), an Arabidopsis mutant with a Ds transposon insertion in the 3' regulatory region of MIR160a. foc plants exhibit a variety of intriguing phenotypes, including serrated rosette leaves, irregular flowers, floral organs inside siliques, reduced fertility, aberrant seeds, and viviparous seedlings. Detailed phenotypic analysis showed that abnormal cell divisions in the basal embryo domain and suspensor led to diverse defects during embryogenesis in foc plants. Further analysis showed that the 3' region was required for the expression of MIR160a. The accumulation of mature miR160 was greatly reduced in foc inflorescences. In addition, the expression pattern of ARF16 and -17 was altered during embryo development in foc plants. foc plants were also deficient in auxin responses. Moreover, auxin was involved in regulating the expression of MIR160a through its 3' regulatory region. Our study not only provides insight into the molecular mechanism of embryo development via MIR160a-regulated ARFs, but also reveals the mechanism regulating MIR160a expression.
منابع مشابه
Mutations in the PERIANTHIA gene of Arabidopsis specifically alter floral organ number and initiation pattern.
An open question in developmental biology is how groups of dividing cells can generate specific numbers of segments or organs. We describe the phenotypic effects of mutations in PERIANTHIA, a gene specifically required for floral organ patterning in Arabidopsis thaliana. Most wild-type Arabidopsis flowers have 4 sepals, 4 petals, 6 stamens, and 2 carpels. Flowers of perianthia mutant plants mos...
متن کاملAn ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development
Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha...
متن کاملA conserved function for Arabidopsis SUPERMAN in regulating floral-whorl cell proliferation in rice, a monocotyledonous plant
Studies of floral organ development in two dicotyledonous plants, Arabidopsis thaliana and Antirrhinum majus, have shown that three sets of genes (A, B and C) can pattern sepals, petals, stamens and carpels [1] [2]. Mechanisms that define boundaries between these floral whorls are unclear, however. The Arabidopsis gene SUPERMAN (SUP), which encodes a putative transcription factor, maintains the...
متن کاملPlant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis.
The control of cell proliferation during organogenesis plays an important role in initiation, growth, and acquisition of the intrinsic size of organs in higher plants. To understand the developmental mechanism that controls intrinsic organ size by regulating the number and extent of cell division during organogenesis, we examined the function of the Arabidopsis regulatory gene AINTEGUMENATA (AN...
متن کاملArabidopsis TSO1 regulates directional processes in cells during floral organogenesis.
Flowers of the previously described Arabidopsis tso1-1 mutant had aberrant, highly reduced organs in place of petals, stamens, and carpels. Cells of tso1-1 flowers had division defects, including failure in cytokinesis, partial cell wall formation, and elevated nuclear DNA content. We describe here two new tso1 alleles (tso1-3 and tso1-4), which caused defects in ovule development, but had litt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 62 3 شماره
صفحات -
تاریخ انتشار 2010